Dietary Exposure to Pesticides in Tannia in Pregnant Surinamese Women
1Tulane University School of Public Health and Tropical Medicine, New Orleans, USA, 2Perisur (Perinatal Interventions Suriname) Foundation, Paramaribo, Suriname, 3Netherlands Organization for Applied Scientific Research, TNO Healthy Living, Leiden, The Netherlands, 4Anton de Kom University of Suriname, Paramaribo, Suriname, 5Research Center Academic Hospital Paramaribo, Paramaribo, Suriname

Background
Suriname’s (8.8 kg active ingredient/ha) neurotoxic pesticides use is among the highest Caribbean-wide. The Caribbean Consortium for Research in Environmental and Occupational Health is assessing exposure to selected pesticides in 1000 vulnerable mother/child dyads. Environmental assessments showed residues of prohibited endosulfan and lindane in tannia (Xanthosoma brasiliense). This study assessed dietary exposure to these pesticides in tannia.

Methods
An interviewer-assisted survey in 696 participants assessed body weight (BW), consumption and intake rates (IRs) of produce. A preliminary deterministic non-cancer risk assessment and a sensitivity analysis were conducted using USEPA’s reference doses (RfDs) for endosulfan and lindane. Tannia consumption-associated risk was determined using the hazard quotient (HQ).

Results
Tannia was the most frequently consumed leafy vegetable (89%); mean IR 0.028 kg/day (range: 0.001-0.531 kg/day). Mean BW: 72 kg (range: 34-138 kg). Average case scenario: Tannia critical IRs > actual IRs (7.8 kg/day for endosulfan, 0.9 kg/day for lindane), HQ < 1 and the levels of concern (LoCs) were 221x > for endosulfan and 26x > for lindane compared to detected pesticide residue levels. Worst case scenario (lowest BW, highest IR and highest pesticide residue level) for lindane: Tannia critical IR (0.3 kg/day) ~ actual IR; HQ > 1; LoC < highest detected pesticide residue level.

Discussion
Dietary exposure to endosulfan in tannia does not seem to pose a risk for adverse health effects, but exposure to lindane in tannia in the worst-case scenario potentially does. Since the current RfDs for endosulfan and lindane are based on non-neurotoxic endpoints, the risk assessment findings must be interpreted cautiously.

Funding
FIC/NIH R24TW009570, R24TW009561, U01TW010087-01, U2RTW010104